Department Logo for Earth, Planetary, and Space Sciences

Yarkovsky-driven Impact Predictions: Apophis and 1950 DA


Jan. 16, 2014, noon - 1 p.m.
Slichter 3853

Presented By:
Davide Farnocchia
JPL

See Event on Google. Subscribe to Calendar

Orbit determination for Near-Earth Asteroids presents unique technical challenges due to the imperative of early detection and careful assessment of the risk posed by specific Earth close approaches. The occurrence of an Earth impact can be decisively driven by the Yarkovsky effect, which is the most important nongravitational perturbation as it causes asteroids to undergo a secular variation in semimajor axis resulting in a quadratic effect in anomaly. We discuss the cases of (99942) Apophis and (29075) 1950 DA. The relevance of the Yarkovsky effect for Apophis is due to a scattering close approach in 2029 with minimum geocentric distance ~38000 km. For 1950 DA the influence of the Yarkovsky effect in 2880 is due to the long time interval preceding the impact. We use the available information on the asteroids' physical models as a starting point for a Monte Carlo method that allow us to measure how the Yarkovsky effect affects orbital predictions. For Apophis we map onto the 2029 close approach b-plane and analyze the keyholes corresponding to resonant close approaches. For 1950 DA we use the b-plane corresponding to the possible impact in 2880. We finally compute the impact probability from the mapped probability density function on the considered b-plane.